A Phase 1b, Open-Label Study to Evaluate the Safety and Efficacy of Novel Hepatitis B Virus Combination Therapies in Patients Living With Chronic Hepatitis B

Edward J Gane¹, Tien H Lim², Jing Hieng Ngu³, Dana Tedesco⁴, Ran Duan⁴, David Z Pan⁴, Irina Botros⁴, Naveed Shaik⁴, Roberto Mateo⁴, Scott Balsitis⁴, Jeffrey J Wallin⁴, Frida Abramov⁴, Audrey H Lau⁴, Grace LH Wong⁵

1 University of Auckland, Auckland, Auckland, New Zealand; 2 Middlemore Hospital, Auckland, New Zealand; 3 Christchurch, New Zealand; 3 Christchurch, New Zealand; 4 Gilead Sciences, Inc., Foster City, CA, USA; 5 The Chinese University of Hong Kong, Hong Kong, China

Conclusions

- Novel treatments and combinations (nivolumab [NIVO] only, NIVO + ledipasvir [LDV]/sofosbuvir [SOF], NIVO + selgantolimod [SLGN], and GS-4224 + SLGN) for hepatitis B virus cure in this trial were generally safe and well tolerated
- Two patients (n = 1, NIVO + LDV/SOF; n = 1, NIVO + SLGN) achieved a ≥0.5 log₁₀ IU/mL decline from baseline in hepatitis B surface antigen (HBsAg) at follow-up week 8
- No patient experienced HBsAg loss
- Novel antiviral and immunological therapies are needed to achieve functional cure in a significant proportion of patients with CHB

Plain Language Summary

- There are multiple approved treatment options for patients with hepatitis B virus infection, but cure is rarely achieved
- This study evaluated several combinations of novel or approved agents to achieve functional cure of hepatitis B virus
- While these novel combinations were generally safe and well tolerated, no patients achieved functional cure

References: 1. World Health Organization. Hepatitis B fact sheet. 2022. **2.** Seto WK, et al. *Lancet.* 2018;392:2313-24. **3.** Choi HSJ, et al. *Hepatol Commun.* 2022;6(5):935-49. **4.** Liu CJ, et al. *Clin Infect Dis.* 2022;75(3):453-9. **5.** Odegard JM, et al. *J Immunother Cancer.* 2024;12:e008547.

Acknowledgments: We extend our thanks to the patients, their families, and all participating investigators. Medical writing support was provided by Danielle I Rubin-Shepherd, PhD, of Red Nucleus, and funded by Gilead Sciences, Inc.

Disclosures: EJG served as an advisor for AbbVie; Aligos Therapeutics; Arbutus Biopharma; Gilead Sciences, Inc.; Janssen; Roche; Vir Biotechnology; and Virion Therapeutics. **THL** reports no conflicts of interest. **JHN** served on an advisory board for Gilead Sciences, Inc., and served on the Speakers Bureau for AbbVie. **DT**, **RD**, **DZP**, **IB**, **NS**, **RM**, **SB**, **JJW**, **FA**, and **AHL** are employees of Gilead Sciences, Inc., and may own stock or stock options. **GLHW** reports grant funding from Gilead Sciences, Inc., and personal fees from Echosens.

Introduction

- Hepatitis B virus (HBV) infection affects 254 million individuals globally¹
- Chronic HBV (CHB) infection is associated with cirrhosis, hepatic decompensation, and hepatocellular carcinoma²
- Current treatments for CHB infection are effective at inhibiting viral replication but rarely achieve functional cure (sustained hepatitis B surface antigen [HBsAg] loss and HBV DNA suppression following a finite course of treatment)³
- A functional cure may require a combination treatment strategy that suppresses viral antigen production and stimulates host immunity³
- Suppression of HBsAg was previously observed in patients with HBV/hepatitis
 C virus coinfection who were treated with ledipasvir (LDV)/sofosbuvir (SOF),⁴
 leading to its evaluation as a potential agent in combination therapies to
 achieve an HBV cure
- In addition to drugs that suppress viral antigens, agents that can potentially reinvigorate exhausted T cells, a key feature of CHB infection, and modulate innate immune responses were explored
- Treatment with either GS-4224, a novel small-molecule inhibitor of programmed death ligand-1 (PD-L1), or nivolumab (NIVO), a monoclonal antibody against programmed cell death protein 1 (PD-1), was evaluated for safety and tolerability
- To improve antiviral cytokine production, antigen presentation, and T-cell activation, selgantolimod (SLGN), a toll-like receptor 8 agonist, was evaluated

Objective

• To assess the safety and tolerability, along with the effect on peripheral cytokines and chemokines, of novel agents in combination regimens in patients with CHB

Methods

- This open-label, Phase 1b multicenter study (ACTRN12618001843246p; GS-US-493-5342) used the following agents in combination regimens in patients with CHB:
- NIVO, an anti–PD-1 monoclonal antibody
- SLGN, a toll-like receptor 8 agonist
- GS-4224, a novel small-molecule PD-L1 inhibitor⁵
- LDV/SOF, a potential suppressor of HBsAg production
- Hepatitis B e antigen-negative patients who were virologically suppressed on nucleos(t)ide analogues were enrolled into 4 cohorts

- The primary efficacy endpoint was the proportion of patients with ≥0.5 log₁₀ IU/mL decline in serum HBsAg from baseline to follow-up week 8 (FU W8)
- Safety, including adverse events (AEs), and laboratory parameters were assessed over the study period
- The V-Plex Plus Human Biomarker MSD multiplex assay was used to evaluate longitudinal serum concentrations for peripheral cytokines and chemokines

Results

Baseline Demographics and Disease Characteristics

Baseline Variables		NIVO n = 13	NIVO + LDV/SOF n = 12	NIVO + SLGN n = 14	GS-4224 + SLGN n = 12
Age, years, mean (range)		50 (36–65)	50 (33–62)	52 (39–64)	48 (38–65)
Sex, male, n (%)		9 (69)	10 (83)	11 (79)	11 (92)
Race, n (%)					
Asian		4 (31)	7 (58)	5 (36)	9 (75)
Native Hawaiian or Pacific Islander		4 (31)	3 (25)	8 (57)	2 (17)
White		4 (31)	1 (8)	0	1 (8)
Other		1 (8)	1 (8)	1 (7)	0
ALT, U/L, median (Q1, Q3)		23 (17, 25)	21 (19, 30)	20 (17, 24)	18 (15, 24)
HBV RNA, log ₁₀ copies/mL, mean (SD)		2.6 (0.5)	2.6 (0.3)	2.5 (0.1)	2.7 (0.5)
HBsAg, log ₁₀ IU/mL, mean (SD)		3.0 (1.1)	2.6 (0.7)	2.7 (0.8)	3.2 (0.6)
HBsAg, log ₁₀ IU/mL category, n (%)	<2	4 (31)	3 (25)	3 (21)	0
	≥2 to <3	1 (8)	6 (50)	3 (21)	4 (33)
	≥3 to <4	6 (46)	2 (17)	8 (57)	7 (58)
	≥4	2 (15)	1 (8)	0	1 (8)
HBeAg negative, n (%)		13 (100)	11 (92)	14 (100)	11 (92)

HBsAg Change From Baseline on Treatment and During FU

Only the NIVO + LDV/SOF group had visits at W14 through W24. EOT for the NIVO, NIVO + SLGN, and GS-4224 + SLGN cohorts was W12, and these participants entered FU immediately.
BL, baseline; EOT, end of treatment; FU, follow-up; HBsAg, hepatitis B surface antigen; LDV, ledipasvir; NIVO, nivolumab; SLGN, selgantolimod; SOF, sofosbuvir; W, week.

- No treatment group had a sustained decline in HBsAg
- The group receiving NIVO + LDV/SOF showed a modest HBsAg decline during treatment, but experienced a rebound during follow-up

- Two patients (1 each in the NIVO + LDV/SOF and NIVO + SLGN groups) experienced
 ≥0.5 log₁₀ IU/mL decline from baseline in HBsAg at FU W8 (primary endpoint)
- No patient achieved HBsAg loss

Two Patients With ≥0.5 Log₁₀ IU/mL Decline From Baseline in HBsAg at FU W8

at W4 and W8 and TND at BL and all FU visits.

ALT, alanine aminotransferase; BL, baseline; FU, follow-up; HBeAb, hepatitis B e antibody; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; LDV, ledipasvir; LLOQ, lower limit of quantitation; NIVO, nivolumab; SLGN, selgantolimod; SOF, sofosbuvir; TND, target not detected; W, week.

One patient (NIVO + LDV/SOF; top) experienced an HBsAg decline during treatment,

which was maintained through FU W8 with rebound observed at FU W24
One patient (NIVO + SLGN; bottom) experienced an HBsAg decline during treatment, which was sustained through FU W24

Safety Parameters GS-4224 + SLGN Patients, n (%) **Any TEAE** 10 (83) **TEAE** related to study drug **TEAE Grade ≥3 TEAE** Grade ≥3 related to study drug **TE SAE** TE SAE related to study drug **TEAE** leading to discontinuation 1 (8)^b NIVO GS-4224 LDV/SOF

bOne patient in the SLGN + GS-4224 group prematurely discontinued study treatment due to multiple gastrointestinal AEs (all Grade 1 AE, adverse event; LDV, ledipasvir; NA, not applicable; NIVO, nivolumab; SAE, serious adverse event; SLGN, selgantolimod; SOF, sofosbuvir; TE, treatment emergent; TEAE, treatment-emergent adverse event.

No patient experienced an immune-related AE related to NIVO

Induction of Peripheral Inflammatory Response With Combination Treatment

- Peripheral inflammatory cytokines and chemokines were significantly elevated from baseline in all cohorts, notably MIG (CXCL-9) and ITAC (CXCL-11)

 A sustained elevation over time of inflammatory cytokines and chemokines was observed for cohorts 1 (NIVO) and 3 (NIVO + SLGN)
- As expected, robust increases in soluble PD-1 were seen in all cohorts receiving NIVO treatment

PD-1, programmed cell death protein 1; SAA, serum amyloid A; SLGN, selgantolimod; SOF, sofosbuvir; TNF, tumor necrosis factor; VCAM, vascular cell adhesion molecule; W, week.